

FIL (a part of GEA Technologies)

Version No: 3.5

Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

Chemwatch Hazard Alert Code: 4

Issue Date: 07/07/2021 Print Date: 01/07/2022 L.GHS.NZL.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	FIL UDDERMARK AEROSOL - GREEN	
Chemical Name	Not Applicable	
Synonyms	CNR3112	
Proper shipping name	AEROSOLS	
Chemical formula	Not Applicable	
Other means of identification	CNX3112	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Highly visible animal marker to indicate cows that have completed their milk withholding period

Details of the supplier of the safety data sheet

Registered company name	FIL (a part of GEA Technologies)	
Address	2 Portside Drive, Mt Manganui Tauranga 3116 New Zealand	
Telephone	+647 575 2162	
Fax	+64 7 575 2161	
Website	www.fil.co.nz	
Email	office.fil@gea.com	

Emergency telephone number

Association / Organisation	CHEMCALL	
Emergency telephone numbers	NZ-0800 243 622 AU -1800127406	
Other emergency telephone numbers	+64 4 9179888(global)	

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes.

ChemWatch Hazard Ratings

	Min Ma	IX I
Flammability	4	
Toxicity	0	0 = Minimum
Body Contact	2	1 = Low
Reactivity	0	2 = Moderate
Chronic	4	3 = High 4 = Extreme

Classification ^[1]	Hazardous to the Aquatic Environment Long-Term Hazard Category 2, Serious Eye Damage/Eye Irritation Category 2, Reproductive Toxicity Category 2, Aerosols Category 1	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	
Determined by Chemwatch using GHS/HSNO criteria	2.1.2A, 6.4A, 6.8B, 9.1B	

Hazard pictogram(s)	
---------------------	--

Signal word Danger

Hazard statement(s)

H411	Toxic to aquatic life with long lasting effects.	
H319	Causes serious eye irritation.	
H361	Suspected of damaging fertility or the unborn child.	
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P211	Do not spray on an open flame or other ignition source.	
P251	Do not pierce or burn, even after use.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P273	Avoid release to the environment.	
P264	Wash all exposed external body areas thoroughly after handling.	

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P391	Collect spillage.	

Precautionary statement(s) Storage

P405	Store locked up.	
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.	

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

P501

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
142-82-5	12-25	n-heptane
110-82-7	3-10	cyclohexane
108-87-2	1-5	methylcyclohexane
111-65-9	<1	n-octane
110-54-3	<1	n-hexane
67-64-1	8-15	acetone
67-63-0	3-10	isopropanol
108-65-6	1-5	2-Methoxy-1-methylethyl acetate
1330-20-7	<1	xylene
106-97-8.	20-40	butane
74-98-6	5-15	propane
Legend:	Legend: 1. Classified by Chernwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

If aerosols come in contact with the eyes: Eye Contact

Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.
Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper

	 and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Generally not applicable.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. Generally not applicable.
Inhalation	 If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Generally not applicable.
Ingestion	 Not considered a normal route of entry. Generally not applicable. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption - decontamination (induced emesis or lavage) is controversial and should

- be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration. Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.

After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.

- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically

To treat poisoning by the higher aliphatic alcohols (up to C7):

- Gastric lavage with copious amounts of water
- It may be beneficial to instill 60 ml of mineral oil into the stomach
- ٠ Oxygen and artificial respiration as needed
- ٠ Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
- To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- + Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

- ۲ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for shock. Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary, for seizures
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg),
- aive 50% dextrose.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Drug therapy should be considered for pulmonary oedema
- Treat seizures with diazepam
- Proparacaine hydrochloride should be used to assist eve irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.
- Haemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For C8 alcohols and above.

Symptomatic and supportive therapy is advised in managing patients.

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comments
Methylhippu-ric acids in urine	1.5 gm/gm creatinine	End of shift	
	2 mg/min	Last 4 hrs of shift	

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.
- SMALL FIRE:
- Water spray, dry chemical or CO2 LARGE FIRE:
- Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
dvice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers.
	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition with violent container rupture. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include:
Fire/Explosion Hazard	, carbon monoxide (CO) , carbon dioxide (CO2) , other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acrid smoke Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place. Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard. WARNING : Long standing in contact with air and light may result in the formation of potentially explosive peroxides.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures See section 8

See section 12

Methods and material for cont	tainment and cleaning up
Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of all upprotected personnel and move upwind. Alert Emergency Authority and advise them of the location and nature of hazard. May be violently or explosively reactive. Wear full body clothing with breathing apparatus. Prevent by any means available, spillage from entering drains and water-courses. Consider evacuation. Shut off all possible sources of ignition and increase ventilation. No smoking or naked lights within area. Use extreme caution to prevent violent reaction. Stop leak only if safe to so do. Water spiray or fog may be used to disperse vapour. Do NOT enter confined space where gas may have collected. Keep area clear until gas has dispersed. Remove leaking cylinders to a safe place. Fit vent pipes. Release pressure under safe, controlled conditions Burn issuing gas at vent pipes. Do NOT exter excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fine Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or verniculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Usean protective clothing, safety glasses, dust mask, gloves. Scolect residues and sale in labelled drums for disposal. <li< td=""></li<>

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contaminated process equipment (E <i>ITEXACO</i>) • Avoid all personal contact, including inhallation.

	Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. Store away from incompatible materials.
nditions for safe storage, in	cluding any incompatibilities
Suitable container	Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. Aerosol dispenser. Check that containers are clearly labelled.

Isopropanol (syn: isopropyl alcohol, IPA):

- forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation
- reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium
- reacts with phosphorus trichloride forming hydrogen chloride gas

reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines,
aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl
peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion),
hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium
tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially
hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane
attacks some plastics, rubber and coatings
reacts with metallic aluminium at high temperature
may generate electrostatic charges
Low molecular weight alkanes:
May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
May react with exidicing materials, nickel earboard in the presence of exugen, best

- May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Storage incompatibility

Xylenes

- ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
 Aromatics can react exothermically with bases and with diazo compounds.

Alcohols

- ▶ are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- ▶ reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
- should not be heated above 49 deg. C. when in contact with aluminium equipment
- For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.

Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 Butane/ isobutane

- reacts violently with strong oxidisers
- reacts with acetylene, halogens and nitrous oxides

is incompatible with chlorine dioxide, conc. nitric acid and some plastics
 may generate electrostatic charges, due to low conductivity, in flow or when agitated - these may ignite the vapour.
 Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C)

- Cyclohexane reacts violently with strong oxidisers, nitrogen tetraoxide
- may generate electrostatic charges, due to low conductivity, following flow or agitation
- Propane:

• reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.

- liquid attacks some plastics, rubber and coatings
 may accumulate static charges which may ignite its vapours
 Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	n-heptane	Heptane (n-Heptane)	400 ppm / 1640 mg/m3	2050 mg/m3 / 500 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	cyclohexane	Cyclohexane	100 ppm / 350 mg/m3	1050 mg/m3 / 300 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	methylcyclohexane	Methylcyclohexane	400 ppm / 1610 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	n-octane	Octane	300 ppm / 1400 mg/m3	1750 mg/m3 / 375 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	n-hexane	Hexane (n-Hexane)	20 ppm / 72 mg/m3	Not Available	Not Available	(bio)-Exposure can also be estimated by biological monitoring.
New Zealand Workplace Exposure Standards (WES)	acetone	Acetone	500 ppm / 1185 mg/m3	2375 mg/m3 / 1000 ppm	Not Available	(bio)-Exposure can also be estimated by biological monitoring.
New Zealand Workplace Exposure Standards (WES)	isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3	1230 mg/m3 / 500 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	2-Methoxy- 1-methylethyl acetate	Propylene glycol monomethyl ether	100 ppm / 369 mg/m3	553 mg/m3 / 150 ppm	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	xylene	Dimethylbenzene	50 ppm / 217 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	butane	Butane	800 ppm / 1900 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	propane	Propane	Not Available	Not Available	Not Available	Simple asphyxiant - may present an explosion hazard

Emergency Limits

Ingredient	TEEL-1 TEEL-2			TEEL-3
n-heptane	500 ppm 830 ppm			5000* ppm
cyclohexane	300 ppm	1700* ppm		10000** ppm
methylcyclohexane	1200* ppm	1700* ppm		10000** ppm
n-octane	230 ppm	385 ppm		5000** ppm
n-hexane	260 ppm	Not Available		Not Available
acetone	Not Available	Not Available		Not Available
isopropanol	400 ppm	2000* ppm		12000** ppm
2-Methoxy-1-methylethyl acetate	100 ppm	160 ppm		660 ppm
2-Methoxy-1-methylethyl acetate	Not Available Not Available			Not Available
xylene	Not Available	ble Not Available		Not Available
butane	Not Available	Available Not Available		Not Available
propane	Not Available	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	
n-heptane	750 ppm		Not Available	
cyclohexane	1,300 ppm		Not Available	
methylcyclohexane	1,200 ppm		Not Available	
n-octane	1,000 ppm		Not Available	
n-hexane	1,100 ppm		Not Available	
acetone	2,500 ppm		Not Available	
isopropanol	2,000 ppm		Not Available	
2-Methoxy-1-methylethyl acetate	Not Available		Not Available	

Ingredient	Original IDLH	Revised IDLH
xylene	900 ppm	Not Available
butane	Not Available	1,600 ppm
propane	2,100 ppm	Not Available

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel

For methylcyclohexane:

High concentrations produce narcosis in animals. The TLV-TWA is based on analogy with heptane, a substance exhibiting similar toxicology, and is thought to be protective against irritation. Prolonged exposure by monkeys to 370 ppm failed to produce adverse health effects.

Odour Safety Factor (OSF)

OSF=0.63 (METHYLCYCLOHEXANE)

Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition)

Saturation vapour concentration: 237000 ppm @ 20 C

NOTE: Detector tubes measuring in excess of 40 ppm, are available.

Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations, allows acceptance of a higher limit.

Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation.

A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system.

Odour Safety Factor(OSF) OSF=38 (ACETONE)

For cyclohexane:

Odour Threshold Value: 784 ppm (detection)

NOTE: Detector tubes for cyclohexane, measuring in excess of 100 ppm are commercially available.

The recommended TLV-TWA represents the borderline of irritation but takes into account the practical difficulties of achieving lower values in the workplace. Whether serious or long-lasting consequences result from exposure at 300 ppm or whether humans become narcosed or fatigued remains to be established. The present value is thought to be a satisfactory bench-mark until further studies are made.

Odour Safety Factor(OSF)

OSF=4 (CYCLOHEXANE)

for heptane (all isomers)

The TLV-TWA is protective against narcotic and irritant effects which are greater than those of pentane or n-hexane but less than those of octane. The TLV-TWA applies to all isomers. Inhalation by humans of 1000 ppm for 6 minutes produced slight dizziness. Higher concentrations for shorter periods produce marked vertigo, incoordination and hilarity. Signs of central nervous system depression occur in the absence of mucous membrane irritation. Brief exposures to high levels (5000 ppm for 4 minutes) produce nausea, loss of appetite and a "gasoline-like" taste in the mouth that persists for many hours after exposure ceases

for: hexane, isomers (excluding n-hexane)

The TLV-TWA is thought to be protective against nausea, headache, upper respiratory tract irritation and CNS depression. The STEL is added to prevent objective depression of the CNS. The lower value ascribed

to n-hexane is due to the neurotoxicity of its metabolites, principally 5-hydroxy-2-hexanone and 2,5-hexanedione. It is considered unlikely that other hexanes follow the same metabolic route. It should be noted however that the n-hexane TLV-TWA also applies to commercial hexane having a concentration of greater than 5% n-hexane.

For butane:

Odour Threshold Value: 2591 ppm (recognition)

Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects.

Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE)

for propylene glycol monomethyl ether (PGME)

Odour Threshold: 10 ppm.

The TLV-TWA is protective against discomfort caused by odour, against eye and skin irritation, and chronic effects (including possible liver and kidney damage).

Individuals exposed to 100 ppm reported a transient unpleasant odour with slight eye irritation after about 1 or 2 hours. At 300 ppm, mild irritation of the eyes and nose developed within 5 minutes; some individuals found the irritation hardly bearable after about an hour. A concentration of 750 ppm was highly irritating. Signs of central nervous system depression developed at 1000 ppm. Neurological, clinical chemical and general medical examinations showed no other conspicuous toxicity.

Concentrations of the beta-isomer, 2-methoxy-1-propyl acetate are low in commercial grades of PGME and teratogenic effects associated with this isomer are expected to be absent. Odour Safety Factor(OSF)

OSF=10 (propylene glycol monomethyl ether)

For n-octane:

Odour Threshold Value: 152 ppm (detection), 235 ppm (recognition)

The TLV-TWA is thought to be protective against narcotic effects produced at higher concentrations.

Odour Safety Factor(OSF)

OSF=6.3 (n-OCTANE)

For n-hexane:

Odour Threshold Value: 65 ppm

NOTE: Detector tubes for n-hexane, measuring in excess of 100 ppm, are available commercially.

Occupational polyneuropathy may result from exposures as low as 500 ppm (as hexane), whilst nearly continuous exposures of 250 ppm have caused neurotoxic effects in animals. Many literature reports have failed to distinguish hexane from n-hexane and on the assumption that the commercial hexane contains 30% n-hexane, a worst case recommendation for TLV is assumed to reduce the risk of peripheral neuropathies (due to the metabolites 2,5-heptanedione and 3,6-octanedione) and other adverse neuropathic effects. Concurrent exposure to chemicals (including MEK) and drugs which induce hepatic liver oxidative metabolism can reduce the time for neuropathy to appear. Odour Safety Factor(OSF)

OSF=0.15 (n-HEXANE)

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition)

NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response).

Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes. Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An

Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation. Odour Safety Factor(OSF) OSF=4 (XYLENE)

For propane Odour Safety Factor(OSF) OSF=0.16 (PROPANE)

Exposure controls

Exposure controls			
Appropriate engineering controls	Articles or manufactured items, in their original condition, get Exceptions may arise following extensive use and subsequer article, may be released to the environment. CARE: Use of a quantity of this material in confined space or could require increased ventilation and/or protective gear Engineering controls are used to remove a hazard or place a be highly effective in protecting workers and will typically be in The basic types of engineering controls are: Process controls which involve changing the way a job activit Enclosure and/or isolation of emission source which keeps a "adds" and "removes" air in the work environment. Ventilation ventilation system must match the particular process and che Employers may need to use multiple types of controls to prever General exhaust is adequate under normal conditions. If risk obtain adequate protection. Provide adequate ventilation in warehouse or closed storage Air contaminants generated in the workplace possess varying circulating air required to effectively remove the contaminant Type of Contaminant: aerosols, (released at low velocity into zone of active gener direct spray, spray painting in shallow booths, gas discharge Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favoura	nt wear, during recycling or disposal operations whe r poorly ventilated area, where rapid build up of cond barrier between the worker and the hazard. Well-de independent of worker interactions to provide this high ty or process is done to reduce the risk. selected hazard "physically" away from the worker and n can remove or dilute an air contaminant if designed emical or contaminant in use. vent employee overexposure. of overexposure exists, wear SAA approved respirat a areas. g "escape" velocities which, in turn, determine the "co- ration) ge (active generation into zone of rapid air motion) Upper end of the range 1: Disturbing room air currents 2: Contaminants of high toxicity 3: High production, heavy use 4: Small hood-local control only ce away from the opening of a simple extraction pipte le cases). Therefore the air speed at the extraction point, i ration apparatus, make it essential that theoretical	re substances, found in the centrated atmosphere may occur, esigned engineering controls can gh level of protection. and ventilation that strategically d properly. The design of a tor. Correct fit is essential to capture velocities" of fresh Speed: 0.5-1 m/s 1-2.5 m/s (200-500 f/min.)
Personal protection			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Close fitting gas tight goggles DO NOT wear contact lenses. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be trained in their removal and suitable equipment should be readily available. In the event of chemical and first-aid personnel should be trained in their removal and suitable equipment should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly		
Skin protection	See Hand protection below	•	
Hands/feet protection	 No special equipment needed when handling small quar OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber g For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety for 	jloves.	

Continued...

	No second environment and due to the advantable and of the analysis	
	No special equipment required due to the physical form of the product.	
Body protection	See Other protection below	
Other protection	 The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. No special equipment needed when handling small quantities. OTHERWISE: Overalls. Skin cleansing cream. Eyewash unit. Do not spray on hot surfaces. 	

No special equipment required due to the physical form of the product.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

FIL UDDERMARK AEROSOL - GREEN

Respiratory protection

Respiratory protection not normally required due to the physical form of the product. Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Material	CPI
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance Aerosol, green

Physical state	article	Relative density (Water = 1)	0.69
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	431
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available

Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	-81	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

himal d in an hutane can
utane can
utane can
severe
incidental
wsiness,
cohols.
tension.
ols are ch less
kplace,
nt central
s system
biratory
shorter
the
three of
а
and
2600 ppm ritating to
ation of
led
symptoms v loss,
gross ge. ce
old otherian so an and a niggar

	developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. If exposure to highly concentrated atmosphere of gas is prolonged this may lead to narcosis, unconsciousness, even coma and unless resuscitated - death.
Ingestion	Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, tatxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at does otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased. Within the homologous series of aliphatic alcohols, nareotic potency may increase even faster than leftality Only scanty toxicity information is available about higher homologues of the aliphatic alcohols are dangerous if they enter the traches. In the rate even a small quantify (0.2 m) of these behaves like a hydrocarbin solvent in causing death from pulmonary oedema. Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols
Skin Contact	 Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Spray mist may produce discomfort Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. 511ipa n-Heptane is a defatting agent and prolonged or repeated contact may cause irritation and dermatitis (inflammation, reddening and swelling). Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonllergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to bilstering (vesiculation), scaling and thickening of the epidermis.
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision.
Chronic	Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: - clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses.

Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins), and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties
Animal studies: No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Principal route of occupational exposure to the gas is by inhalation.
Chronic inhalation or skin exposure to n-hexane may cause peripheral neuropathy, which is damage to nerve ends in extremities, e.g. fingers, with loss of sensation and characteristic thickening. Nerve damage has been documented with chronic exposures of greater than 500 ppm. Improvement in condition does not immediately follow removal from exposure and symptoms may progress for two or three months. Recovery may take a year or more depending on severity of exposure, and may not always be complete. Exposure to n-hexane with methyl ethyl ketone (MEK) will accelerate the appearance of damage, but MEK alone will not cause the nerve damage. Other isomers of hexane do not cause nerve damage. [<i>Source: Shell Co.</i>] Long term, or repeated exposure to isopropanol may cause inco-ordination and tiredness. Repeated inhalation exposure to isopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol does not cause genetic damage. There are inconclusive reports of human sensitisation from skin contacts with isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol.
Animal testing showed the chronic exposure did not produce reproductive effects. NOTE: Commercial isopropanol does not contain "isopropyl oil", which caused an excess incidence of sinus and throat cancers in isoproanol production workers in the past. "Isopropyl oil" is no longer formed during production of isopropanol. Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions.
Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

FIL UDDERMARK AEROSOL -	ΤΟΧΙΟΙΤΥ	IRRITATION	
GREEN	Not Available	Not Available	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
n-heptane	Inhalation(Rat) LC50; >29.29 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50; >5000 mg/kg ^[1]		
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
cyclohexane	Inhalation(Rat) LC50; >5540 ppm4h ^[1]	Skin(rabbit): 1548 mg/48hr - mild	
	Oral (Rat) LD50; 12705 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]	
		Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Not Available	
methylcyclohexane	Inhalation(Dog) LC50; >4.075 mg/l4h ^[1]		
	Oral (Mouse) LD50; 2250 mg/kg ^[2]		
	ΤΟΧΙΟΙΤΥ	IRRITATION	
n-octane	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Inhalation(Rat) LC50; >24.88 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	

	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye(rabbit): 10 mg - mild	
n-hexane	Inhalation(Rat) LC50; 48000 ppm4h ^[2]		
	Oral (Rat) LD50; 28710 mg/kg ^[2]		
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: 20000 mg/kg ^[2]	Eye (human): 500 ppm - irritant	
	Inhalation(Mouse) LC50; 44 mg/L4h ^[2]	Eye (rabbit): 20mg/24hr -moderate	
	Oral (Rat) LD50; 5800 mg/kg ^[2]	Eye (rabbit): 3.95 mg - SEVERE	
acetone		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit): 500 mg/24hr - mild	
		Skin (rabbit):395mg (open) - mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: 12800 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate	
isopropanol	Inhalation(Mouse) LC50; 53 mg/L4h ^[2]	Eye (rabbit): 100 mg - SEVERE	
	Oral (Mouse) LD50; 3600 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate	
		Skin (rabbit): 500 mg - mild	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit) 230 mg mild	
thoxy-1-methylethyl	Oral (Rat) LD50; 3739 mg/kg ^[2]	Eye (rabbit) 500 mg/24 h mild	
acetate		Eye: no adverse effect observed (not irritating) ^[1]	
		Skin (rabbit) 500 mg open - mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant	
	Inhalation(Rat) LC50; 5000 ppm4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE	
xylene	Oral (Mouse) LD50; 2119 mg/kg ^[2]	Eye (rabbit): 87 mg mild	
		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit):500 mg/24h moderate	
		Skin: adverse effect observed (irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
butane	Inhalation(Rat) LC50; 658 mg/l4h ^[2]	Not Available	
	TOXICITY	IRRITATION	

CYCLOHEXANE	Bacteria mutagen
N-OCTANE	Oral (rat) LD50: 5630 mg/kg* [CCINFO] Nil reported
ACETONE	for acetone: The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice. Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 were not associated with any

	dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal
ISOPROPANOL	research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater. For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. Repeat dose studies : The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. Reproductive toxicity : A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanis
2-METHOXY-1-METHYLETHYL ACETATE	human cancer risk assessment NOTE: Exposure of pregnant rats and rabbits to the substance did not give rise to teratogenic effects at concentrations up to 3000 ppm. Fetotoxic effects were seen in rats but not in rabbits at this concentration; maternal toxicity was noted in both species.
XYLENE	Reproductive effector in rats The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
FIL UDDERMARK AEROSOL - GREEN & 2-METHOXY- 1-METHYLETHYL ACETATE	Ito propylene glycol ethers (PGEs): Typical propylene glycol ethers include saxociated with the lower molecular weight homologues of the ethylene series. Stuck has a one ethers of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blocd hemohylic effects), or thymus, are alkoxyacetic acid. The reproductive add evelopmental trucicities of the lower molecular weight homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive gaecies, also through formation of an alkoxyacetic acid. The reproductive toxicity but can cause haemolysis in sensitive gaecies, also through formation of an alkoxyacetic acid. The reproductive toxicity but can cause haemolysis in sensitive gaecies, also through formation of an alkoxyacetic acid. The protocol (1 moortiss at beta-isomers are able to form the alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acid. In this althe most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight homologue by the nord-detectable toxicity any type at dosses or exposure levels greater what the bad.

Mutagenicity	X	Aspiration Hazard	X
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Skin Irritation/Corrosion	×	Reproductivity	✓
Acute Toxicity	×	Carcinogenicity	×
2-METHOXY-1-METHYLETHYL ACETATE & PROPANE	No significant acute toxicological data identified in liter	rature search.	
ISOPROPANOL & XYLENE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.		
ISOPROPANOL & 2-METHOXY-1-METHYLETHYL ACETATE	Asthma-like symptoms may continue for months or ev known as reactive airways dysfunction syndrome (RAI criteria for diagnosing RADS include the absence of p asthma-like symptoms within minutes to hours of a do airflow pattern on lung function tests, moderate to sev lymphocytic inflammation, without eosinophilia. RADS the concentration of and duration of exposure to the ir result of exposure due to high concentrations of irritati disorder is characterized by difficulty breathing, cough	DS) which can occur after exposure to revious airways disease in a non-atop cumented exposure to the irritant. Off ere bronchial hyperreactivity on meti- (or asthma) following an irritating inh- ritating substance. On the other hand ing substance (often particles) and is of	o high levels of highly irritating compound. Main bic individual, with sudden onset of persistent her criteria for diagnosis of RADS include a reversible acholine challenge testing, and the lack of minimal alation is an infrequent disorder with rates related to , industrial bronchitis is a disorder that occurs as a
ACETONE & ISOPROPANOL & 2-METHOXY-1-METHYLETHYL ACETATE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.		
N-HEXANE & 2-METHOXY- 1-METHYLETHYL ACETATE	The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.		
	gavage study in rats. No adverse effects were found o In addition, there is no evidence from histopathologica chemicals would pose a reproductive hazard to human In developmental toxicity studies many PGEs have be levels and show no frank developmental effects. Due i effects. At high doses where maternal toxicity occurs (delayed skeletal ossification or increased 13th ribs, ha The weight of the evidence indicates that propylene gl number of assays for PnB, DPnB, DPnA and TPM. Pi cells with DPnB. However, negative results were seen these PGEs would be genotoxic <i>in vivo</i> . In a 2-year bi	on reproductive organs, fertility rates, or al data from repeated-dose studies for n health. een tested by various routes of expose to the rapid hydrolysis of DPMA to DF (e.g., significant body weight loss), an ave been reported. Commercially avai lycol ethers are not likely to be genoto ositive results were only seen in 3 out n a mouse micronucleus assay with	the category members that would indicate that these are and in various species at significant exposure PM, DPMA would not be expected to show teratogenic increased incidence of some anomalies such as lable PGEs showed no teratogenicity. <i>sic. In vitro</i> , negative results have been seen in a to f 5 chromosome aberration assays in mammalian DPnB and PM. Thus, there is no evidence to suggest

Data either not available or does not fill the criteria for classification
 Data available to make classification

SECTION 12 Ecological information

FIL UDDERMARK AEROSOL - GREEN	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	504h	Crustacea	0.17mg/l	2
n-heptane	EC50	48h	Crustacea	0.64mg/l	2
	LC50	96h	Fish	3446.8mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Sourc
cyclohexane	EC50	72h	Algae or other aquatic plants	3.428mg/l	2
	EC50(ECx)	48h	Crustacea	0.9mg/l	2
	BCF	1344h	Fish	31-102	7
	EC50	48h	Crustacea	0.9mg/l	2
	EC50	96h	Algae or other aquatic plants	2.17mg/l	2
	LC50	96h	Fish	4.53mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	NOEC(ECx)	72h	Algae or other aquatic plants	0.022mg/l	2
	BCF	1344h	Fish	95-321	7
methylcyclohexane	EC50	48h	Crustacea	0.326mg/l	2
	LC50	96h	Fish	2.07mg/l	2
	EC50	72h	Algae or other aquatic plants	0.134mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
n-octane	NOEC(ECx)	504h	Crustacea	0.17mg/l	2

	Endpoint	Test Duration (hr)	Species	Value	Sou
n-hexane	EC50(ECx)	240h	Algae or other aquatic plants	25.023-137.802mg	/L 4
	Endpoint	Test Duration (hr)	Species	Value	Sou
	NOEC(ECx)	12h	Fish	0.001mg/L	4
acetone	EC50	48h	Crustacea	6098.4mg/L	5
	EC50	96h	Algae or other aquatic plants	9.873-27.684mg/	4
	LC50	96h	Fish	3744.6-5000.7mg	/L 4
	Endpoint	Test Duration (hr)	Species	Value	Sou
	EC50	72h	Algae or other aquatic plants	>1000m	g/l 1
	EC50(ECx)	24h	Algae or other aquatic plants	0.011mg	′L 4
isopropanol	EC50	48h	Crustacea	7550mg/	4
	EC50	96h	Algae or other aquatic plants	>1000m	g/l 1
	LC50	96h	Fish	4200mg	4
	Endpoint	Test Duration (hr)	Species	Value	Sou
	EC50	72h	Algae or other aquatic plants	s >1000m	g/l 2
2-Methoxy-1-methylethyl	NOEC(ECx)	336h	Fish	47.5mg/	2
acetate	EC50	48h	3h Crustacea		2
	EC50	96h	Algae or other aquatic plants	s >1000m	g/l 2
	LC50	96h	Fish	100mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Sou
	EC50	72h	Algae or other aquatic plant	ts 4.6mg	1 2
xylene	NOEC(ECx)	73h	Algae or other aquatic plant	ts 0.44m	g/l 2
	EC50	48h	Crustacea	1.8mg	1 2
	LC50	96h	Fish	2.6mg	1 2
	Endpoint	Test Duration (hr)	Species	Value	Sou
hutere	EC50(ECx)	96h	Algae or other aquatic plants	s 7.71mg	1 2
butane	EC50	96h	Algae or other aquatic plants	s 7.71mg	12
	LC50	96h	Fish	24.11m	g/l 2
	Endpoint	Test Duration (hr)	Species	Value	Sou
	EC50(ECx)	96h	Algae or other aquatic plants	s 7.71mg	12
propane	EC50	96h	Algae or other aquatic plants	s 7.71mg	12
	LC50	96h	Fish	24.11m	g/l 2

Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. MET - Bioconcentration Data 8. Vendor Data

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes >naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

(1) n-alkanes, especially in the C10-C25 range, which are degraded readily;

(2) isoalkanes;

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation.

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L.was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For isopropanol (IPA): log Kow : -0.16- 0.28 Half-life (hr) air : 33-84 Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06 BOD 5: 1.19,60% COD : 1.61-2.30,97% ThOD : 2.4 BOD 20: >70% * [Akzo Nobel]

Environmental Fate

Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy

radical (OH) attack. Overall, IPA presents a low potential hazard to aquatic or terrestrial biota.

IPA is expected to volatilise slowly from water based on a calculated Henry s Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days). IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log Koc) of 0.03.

IPA has the potential to leach through the soil due to its low soil adsorption

In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 /molecule-sec, and an OH concentration of 1.5 x 106 molecule/cm3, which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 x 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Ecotoxicity:

IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1,400 to more than 10,000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms.

Chronic aquatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate. Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures.

Toxicity to Plants

Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test.

For n-heptane:

log Kow : 4.66 Koc : 2400-8100

Continued...

Half-life (hr) air : 52.8 Half-life (hr) H2O surface water : 2.9-312 Henry's atm m3 /mol: 2.06 BOD 5 if unstated: 1.92 COD : 0.06 BCF : 340-2000 log BCF : 2.53-3.31 Environmental fate:

Photolysis or hydrolysis of n-heptane are not expected to be important environmental fate processes. Biodegradation of n-heptane may occur in soil and water, however volatilisation and adsorption are expected to be more important fate processes. A high Koc (2400-8200) indicates n-heptane will be slightly mobile to immobile in soil. In aquatic systems n-heptane may partition from the water column to organic matter in sediments and suspended solids. The bioconcentration of n-heptane may be important in aquatic environments, the Henry's Law constant suggests rapid volatilisation from environmental waters and surface soils. The volatilisation half-lives from a model river and a model pond (the latter considers the effect of adsorption) have been estimated to be 2.9 hr and 13 days, respectively.

n-Heptane is expected to exist entirely in the vapour phase in ambient air. Reactions with photochemically produced hydroxyl radicals in the atmosphere have been shown to be important (estimated half-life of 2.4 days calculated from its rate constant of 7.15x10-12 cu cm/molecule-sec at 25 deg C). Data also suggests that night-time reactions with nitrate radicals may contribute to the atmospheric transformation of n-heptane, especially in urban environments. n-Heptane does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight

An estimated BCF of 2,000 using log Kow suggests the potential for bioconcentration in aquatic organisms is very high. Based on 100% degradation after 4 days in water inoculated with gasoline contaminated soil and 100% degradation after 25 days in water inoculated with activated sewage sludge, biodegradation is expected to be an important fate process for n-heptane in water.

Ecotoxicity:

Fish LC50 (48 h): goldfish (Carrasius auratus) 4 mg/l; golden orfe (Idus melanotus) 2940 mg/l; western mosquitofish (Gambusia affinis) 4924 mg/l Daphnia LC50 (24 h): >10 mg/l

Daphnia EC50 (96 h): 82 mg/l (immobilisation) Opposum shrimp (Mysidopsis bahia) LC50 (96 h): 0.1 mg/l Snail EC50 (96 h): 472 mg/l For n-hexane: log Kow: 3.17-3.94 BOD 5 if unstated: 2.21 COD: 0.04 ThOD: 3.52 Environmental fate:

Environmental fate:

Transport and Partitioning: The physical properties of *n*-hexane that affect its transport and partitioning in the environment are: water solubility of 9.5 mg/L; log[Kow] (octanol/water partition coefficient), estimated as 3.29; Henry s law constant, 1.69 atm-m3 mol; vapor pressure, 150 mm Hg at 25 C; and log[Koc] in the range of 2.90 to 3.61. As with many alkanes, experimental methods for the estimation of the Koc parameter are lacking, so that estimates must be made based on theoretical considerations.

The dominant transport process from water is volatilization. Based on mathematical models the half-life for *n*-hexane in bodies of water with any degree of turbulent mixing (e.g., rivers) would be less than 3 hours. For standing bodies of water (e.g. small ponds), a half-life no longer than one week (6.8 days) is estimated Based on the log octanol/water partition coefficient (i.e. log[Koc]) and the estimated log sorption coefficient (i.e. log[Koc]) *n*-hexane is not expected to become concentrated in biota. A calculated bioconcentration factor (BCF) of 453 for a fathead minnow further suggests a low potential for *n*-hexane to bioconcentrate or bioaccumulate in trophic food chains.

In soil, the dominant transport mechanism for *n*-hexane present near the surface probably is volatilisation (based on its Henry s law constant, water solubility, vapor pressure, and Koc). While its estimated Koc values suggest a moderate ability to sorb to soil particles, *n*-hexane has a density (0.6603 g/mL at 20 C) well below that of water and a very low water solubility of 9.5 mg/L. *n*-Hexane would, therefore, be viewed as a light nonaqueous phase liquid (LNAPL), which would suggest a low potential for leaching into the lower soil depths since the *n*-hexane would tend to float on the top of the saturated zone of the water table. *n*-Hexane would generally stay near the soil surface and, if not appreciably sorbed into the soil matrix, would be expected eventually to volatilise to the atmosphere. Exceptions would involve locations with shallow groundwater tables where there were large spills of hexane products. In such cases, the *n*-hexane dout out ocontaminant a large volume of soil materials.

Air: *n*-Hexane does not absorb ultraviolet (UV) light at 290 nm and is thus not expected to undergo direct photolysis reactions. The dominant tropospheric removal mechanism for *n*-hexane is generally regarded to be decomposition by hydroxyl radicals. Calculations assuming typical hydroxyl radical concentrations suggest a half-life of approximately 2.9 days. While *n*-hexane can react with nitrogen oxides to produce ozone precursors under controlled laboratory conditions, the smog-producing potential of *n*-hexane is very low compared to that of other alkanes or chlorinated VOCs. Hydroxyl in reactions in the upper troposphere, therefore, are probably the primary mechanisms for *n*-hexane degradation in the atmosphere. As with most alkanes, *n*-hexane is resistant to hydrolysis

Water: Although few data are available dealing explicitly with the biodegradation of *n*-hexane in water, neither hydrolysis nor biodegradation in surface waters appears to be rapid compared with volatilization. In surface waters, as in the atmosphere, alkanes such as *n*-hexane would be resistant to hydrolysis. Biodegradation is probably the most significant degradation mechanism in groundwater. The ability of *Pseudomonas mendocina* bacteria to metabolise *n*-hexane in laboratory microcosms simulating groundwater conditions has been documented. Mixed bacterial cultures as well as pure cultures are documented as capable of metabolising *n*-hexane under aerobic conditions. In general, linear alkanes (such as *n*-hexane) are viewed as the most readily biodegradable fractions in petroleum , particularly when oxygen is present in solution. Once introduced into groundwater, *n*-hexane may be fairly persistent since its degradation by chemical hydrolysis is slow and opportunities for biodegradation may be limited under anoxic conditions or where nutrients such as nitrogen or phosphorus are in limited supply.

Sediment and Soil: The most important biodegradation processes involve the conversion of the *n*-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. Similar processes are encountered with other light hydrocarbons such as heptane. In general, unless the *n*-hexane is buried at some depth within a soil or sediment, volatilisation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes. Once introduced into deeper sediments, *n*-hexane may be fairly persistent. Ecotoxicity:

Fish LC50 (96 h): Oncorhyncus mykiss 4.14 mg/l; Pimephales promelus 2.5 mg/l (flow through); Lepomis macrochirus 4.12 mg/l

Daphnia EC50 (48 h): 3.87 mg/l

For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylghoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photo-oxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.

For Ketones: Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its reactions in air, it seems likely that ketones undergo photolysis in water.

Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water. Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify.

- -

For butane: log Kow: 2.89 Koc: 450-900 BCF 1.9

Environmental Fate

Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilistion from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported

Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane.

For cyclohexanes: log Kow: 3.44 Water solubility: 54.8 mg/l (25 C) Vapour pressure 97.6 mm Hg (25 C) Henry's Law Constant: 0.193 atm-m3/mole Koc : 480 Half-life (hr) air : 6-52 Half-life (hr) H2O surface water : 2 ThOD : 3.42 BCF : 242

Environmental fate:

Terrestrial fate: If released on land cyclohexane will be lost by volatilisation and should leach into the ground. Cyclohexane is resistant to biodegradation but may slowly biodegrade in the presence of other hydrocarbons that are themselves biodegraded.

Aquatic fate: Volatilisation from water(estimated half-life 2 hours in a model river) should be the most important fate process in aquatic systems.

Atmospheric fate: In the atmosphere, cyclohexane will degrade by reaction with photochemically produced hydroxyl radicals (half-life 52 hours). The half-life is much shorter under photochemical smog conditions with half-lives as low as 6 hours being reported.

Biodegradation: Cyclohexanes are highly resistant to biodegradation and are catabolised chiefly by cooxidation. Thus they do not support growth of the degrading organism themselves but are metabolised during the course of the microorganisms growth on another, usually similar substrate. Initial attack involves oxygenation and subsequent ring cleavage to simply degradable acids. 10% degradation in 12 hours was reported by microorganisms isolated from a brackish creek in an area usually exposed to oil.

Abiotic degradation: In the atmosphere cyclohexane reacts with photochemically produced hydroxyl radicals with a half-life of 52 hours based on a recommended rate constant of 7.38 x 10-12 cm3mol-sec and a hydroxyl radical concentration of 5 x 10+5 cm3/sec. Photodegradation is much faster in the presence of

nitrogen oxides (photochemical smog conditions).

Compared with other solvents, the reactivity of cyclohexane (measured by ozone forming potential) is relatively low (2 on a scale of 5). Products of reaction are cyclohexanone, cyclohexyl nitrate and unidentified carbonyl compounds resulting from ring cleavage.

Cyclohexane does not have any chromophores that absorb UV radiation at >290 nm so should not be subject to direct photolysis.

Bioconcentration Factor (BCF): Using log Kow a BCF of 242 can be estimated; some bioconcentration is expected. Significant risk of bioaccumulation is likely

Soil adsorption/ mobility: The estimated Koc for cyclohexane (from its water solubility) is 480 indicating moderate soil adsorptivity. Test results show a small interaction with soil adsorbents and adsorptivity was only casually related to the organic carbon content of sediment. Adsorption constants for cyclohexane in three sediments ranged from 13 to 61.1 and 0.6 (mg/g/ mg/l) in montmorillonite and illite, respectively.

Volatilisation from water/ soil. The very high Henry's law constant indicates rapid volatilisation from water with the rate being controlled by diffusion through the liquid phase. A volatilisation half-life from a model river 1 m deep with a 1 m/sec current and a 3 m/sec wind is calculated to be 2.8 hours. In view of the high vapour pressure and moderate adsorption to soil, volatilisation from soil and surfaces should be considerable.

Ecotoxicity:

Fish LC50 (96 h) Pimephales promelus 4.53 mg/l (flow through); Lepomis macrochirus 34.72 mg/l; Poecilia reticulata 48 mg/l

Daphnia EC50 (48 h): 400 mg/l

Algal EC50 (72 h): Scenedesmus subspicatus >500 mg/l

Photobacterium phosphoreum EC50 (5 min) 85.5 mg/l; (10 min) 93 mg/l

For Propane: Koc 460. log Kow 2.36

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemicallyproduced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. DO NOT discharge into sewer or waterways

for acetone: log Kow: -0.24 Half-life (hr) air: 312-1896 Half-life (hr) H2O surface water: 20 Henry's atm m3 /mol: 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07 ThOD: 2.2 BCF: 0.69 Environmental fate:

Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water

In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source.

Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life.

Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades

Acetone does not concentrate in the food chain.

Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period

Drinking Water Standard: none available. Soil Guidelines: none available. Air Quality Standards: none available. Ecotoxicity:

Testing shows that acetone exhibits a low order of toxicity

Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l

Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l

Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l

Aquatic invertebrate 2100 - 16700 mg/l

Aquatic plant NOEC: 5400-7500 mg/l

Daphnia magna chronic NOEC 1660 mg/l

Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuehniella*) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality. The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (*Entosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
n-heptane	LOW LOW	
cyclohexane	HIGH (Half-life = 360 days)	LOW (Half-life = 3.63 days)
methylcyclohexane	LOW	LOW
n-octane	LOW	LOW
n-hexane	LOW	LOW
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)
2-Methoxy-1-methylethyl acetate	LOW (Half-life = 56 days)	LOW (Half-life = 1.7 days)
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
butane	LOW	LOW
propane	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
n-heptane	HIGH (LogKOW = 4.66)
cyclohexane	LOW (BCF = 242)
methylcyclohexane	LOW (BCF = 321)
n-octane	HIGH (LogKOW = 5.18)
n-hexane	MEDIUM (LogKOW = 3.9)
acetone	LOW (BCF = 0.69)
isopropanol	LOW (LogKOW = 0.05)
2-Methoxy-1-methylethyl acetate	LOW (BCF = 2)
xylene	MEDIUM (BCF = 740)
butane	LOW (LogKOW = 2.89)
propane	LOW (LogKOW = 2.36)

Mobility in soil

Ingredient	Mobility
n-heptane	LOW (KOC = 274.7)
cyclohexane	LOW (KOC = 165.5)
methylcyclohexane	LOW (KOC = 268)
n-octane	LOW (KOC = 506.7)
n-hexane	LOW (KOC = 149)
acetone	HIGH (KOC = 1.981)
isopropanol	HIGH (KOC = 1.06)
2-Methoxy-1-methylethyl acetate	HIGH (KOC = 1)
butane	LOW (KOC = 43.79)
propane	LOW (KOC = 23.74)

SECTION 13 Disposal considerations

Issue Date: 07/07/2021 Print Date: 01/07/2022

Product / Packaging disposal	 Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Management Authority for disposal. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Consult State Land Waste Management Authority for disposal. Discharge contents of damaged aerosol cans at an approved site. Allow small quantities to evaporate. DO NOT incinerate or puncture aerosol cans. Bury residues and emptied aerosol cans at an approved site.

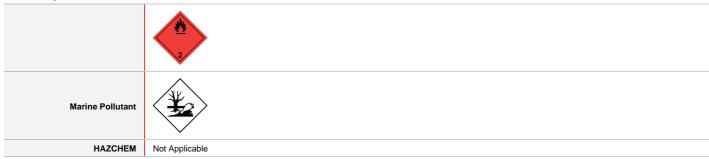
Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility.

Burning the hazardous substance must happen under controlled conditions with no person or place exposed to


(1) a blast overpressure of more than 9 kPa; or

(2) an unsafe level of heat radiation.

The disposed hazardous substance must not come into contact with class 1 or 5 substances.

SECTION 14 Transport information

Labels Required

Land transport (UN)

UN number	950		
UN proper shipping name	EROSOLS		
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions 63; 190; 277; 327; 344; 381 Limited quantity 1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950				
UN proper shipping name	Aerosols, flammable	Aerosols, flammable			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L			
Packing group	Not Applicable	Not Applicable			
Environmental hazard	Environmentally hazardous				
	Special provisions		A145 A167 A802		
	Cargo Only Packing In	structions	203		
	Cargo Only Maximum Qty / Pack		150 kg		
Special precautions for user	Passenger and Cargo	Packing Instructions	203		
	Passenger and Cargo	Maximum Qty / Pack	75 kg		
	Passenger and Cargo	Limited Quantity Packing Instructions	Y203		
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G		

Sea transport (IMDG-Code / GGVSee)

UN number	1950			
UN proper shipping name	AEROSOLS			
Transport hazard class(es)	IMDG Class IMDG Subrisk	2.1 Not Applicable		
Packing group	Not Applicable			
Environmental hazard	Marine Pollutant			
Special precautions for user	EMS Number Special provision Limited Quantitie			

Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
n-heptane	Not Available
cyclohexane	Not Available
methylcyclohexane	Not Available
n-octane	Not Available
n-hexane	Not Available
acetone	Not Available
isopropanol	Not Available
2-Methoxy-1-methylethyl acetate	Not Available
xylene	Not Available
butane	Not Available
propane	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
n-heptane	Not Available
cyclohexane	Not Available
methylcyclohexane	Not Available
n-octane	Not Available
n-hexane	Not Available
acetone	Not Available
isopropanol	Not Available
2-Methoxy-1-methylethyl acetate	Not Available
xylene	Not Available
butane	Not Available
propane	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard
HSR002515	Aerosols Flammable Group Standard 2020

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

n-heptane is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) \mbox{Act} - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES)

cyclohexane is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data methylcyclohexane is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data n-octane is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data n-hexane is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Inventory of Chemicals (NZIoC) of Chemicals New Zealand Workplace Exposure Standards (WES) acetone is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data isopropanol is found on the following regulatory lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Monographs of Chemicals - Classification Data New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals 2-Methoxy-1-methylethyl acetate is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals xylene is found on the following regulatory lists New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs of Chemicals - Classification Data New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals butane is found on the following regulatory lists New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification Chemical Footprint Project - Chemicals of High Concern List of Chemicals - Classification Data New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals propane is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Workplace Exposure Standards (WES) of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data Hazardous Substance Location Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantity (Closed Containers)	Quantity (Open Containers)
2.1.2A	3 000 L (aggregate water capacity)	3 000 L (aggregate water capacity)

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
2.1.2A				1L (aggregate water capacity)

Tracking Requirements

Not Applicable

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (n-heptane; cyclohexane; methylcyclohexane; n-octane; n-hexane; acetone; isopropanol; xylene; butane; propane)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	No (methylcyclohexane)	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	07/07/2021	
Initial Date	18/11/2020	
SDS Version Summary		
Version	Date of Update	Sections Updated

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals **DSL: Domestic Substances List** NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances

Issue Date: 07/07/2021 Print Date: 01/07/2022

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.